
Apache Kafka, a distributed
persistent transactional log

Ugo Landini - Staff Solutions Engineer

Last updated: 28/06/23

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> whoami

apiVersion: confluent/v1
kind: staff engineer
metadata:
 name: ugo landini
 nick: ugol
 email: ugo@confluent.io, ugo.landini@gmail.com
 namespace: confluent
 annotations: apache/committer, oss lover, distributed geek
 site: https://ugol.io
 labels:
 family: dad of two
 prev_companies: sun microsystems, vmware, red hat
 spec:
 replicas: 1
 containers:
 - image: github.com/ugol:latest

mailto:ugo@confluent.io
mailto:ugo.landini@gmail.com
https://ugol.io

First look at Kafka
(from a cloud perspective)

Copyright 2020, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. 4
https://gianlucanatali.github.io/streaming-games/index.html

https://gianlucanatali.github.io/streaming-games/index.html

Copyright 2020, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Copyright 2020, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

<<Stream>>
USER_GAME

<<Stream>>
USER_LOSSES

<<Table>>
LOSSES_PER_USE

R

<<Table>>
STATS_PER_USER

CREATE TABLE
FROM SELECT ..
JOIN…
GROUP BY ...

INSERT
INTO...

SELECT USER, HIGHEST_SCORE,
HIGHEST_LEVEL,
TOTAL_LOSSES from
STATS_PER_USER
WHERE USER IN (...)

ksqlDB in Confluent Cloud

Kafka 101

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Some Kafka concepts to grasp

● Events
● Topics

○ Partitions
○ Replica

● Producers
○ Acks
○ ISR

● Consumer
○ Consumer Groups
○

confluent kafka topic produce test --parse-key --delimiter ,
confluent kafka topic consume test --from-beginning

Events

An event represents an immutable fact about
something that happened

Events

An event represents an immutable fact about
something that happened

● Examples of events are customer orders,
payments, activities, or measurements

Event Streams

Events are produced to, stored in, and
consumed from an event stream

Event Streams

Events are produced to, stored in, and
consumed from an event stream

● New events are always appended to the
end of the event stream

Event Streams

Events are produced to, stored in, and
consumed from an event stream

● New events are always appended to the
end of the event stream
○ Events are delivered to consumers in this

append order

Event Streams

Events are produced to, stored in, and
consumed from an event stream

● New events are always appended to the
end of the event stream
○ Events are delivered to consumers in this

append order

Once events have been written, they are
immutable

Kafka Events

Kafka events contain:

● Key: identifies events related to a specific
entity

{
 "key": 2,
 "value": {
 "user_id": 2,
 "username": "user1234",
 "email": "user1234@mail.com",
 "level": "GOLD"
 }
}

Kafka Events

Kafka events contain:

● Key: identifies events related to a specific
entity

{
 "key": 2,
 "value": {
 "user_id": 2,
 "username": "user1234",
 "email": "user1234@mail.com",
 "level": "GOLD"
 }
}

Kafka Events

Kafka events contain:

● Key: identifies events related to a specific
entity

● Value: data that describes the event

Kafka Events

Kafka events contain:

● Key: identifies events related to a specific
entity

● Value: data that describes the event
● Timestamp: denotes when the event was

created

Kafka Events

Kafka events contain:

● Key: identifies events related to a specific
entity

● Value: data that describes the event
● Timestamp: denotes when the event was

created
● Metadata: optional

Kafka events are also referred to as “records”
and “messages”

● event = record = message

Kafka Events

account-deposits

account-balance

Kafka Topics

Named container of “related” events

● Example: a topic that stores all customer
orders

account-deposits

account-balance

Kafka Topics

Named container of “related” events

● Example: a topic that stores all customer
orders

● Kafka clusters typically contain many topics

account-deposits

account-balance

Kafka Topics

Named container of “related” events

● Example: a topic that stores all customer
orders

● Kafka clusters typically contain many topics
○ Consumers subscribe at the topic level

account-deposits

account-balance

Kafka Topics

Named container of “related” events

● Example: a topic that stores all customer
orders

● Kafka clusters typically contain many topics
○ Consumers subscribe at the topic level

Take the form of a durable log (data structure)
of events

account-deposits

account-balance

Kafka Topics

Named container of “related” events

● Example: a topic that stores all customer
orders

● Kafka clusters typically contain many topics
○ Consumers subscribe at the topic level

Take the form of a durable log (data structure)
of events

● Data retention period is configurable

account-deposits

Partition 0

Partition 1

Partition 2

Topic Partitions

A topic consists of partitions

account-deposits

Partition 0

Partition 1

Partition 2

Topic Partitions

A topic consists of partitions

● Partitions provide scalability

account-deposits

Partition 0

Partition 1

Partition 2

Topic Partitions

A topic consists of partitions

● Partitions provide scalability

● Partitions are evenly distributed across
brokers within the Kafka cluster

account-deposits

Partition 0

Partition 1

Partition 2

Topic Partitions

A topic consists of partitions

● Partitions provide scalability

● Partitions are evenly distributed across
brokers within the Kafka cluster

○ With Confluent Tiered Storage, partitions
can be split between brokers and object
storage

account-deposits

Partition 0

0 1 2 3

Partition 1

0 1 2

Partition 2

0 1 2 3 4

Partition Offsets

When events are written to a partition, they
are assigned an offset identifying the logical
position within the partition

account-deposits

Partition 0

0 1 2 3

Partition 1

0 1 2

Partition 2

0 1 2 3 4

Partition Offsets

When events are written to a partition, they
are assigned an offset identifying the logical
position within the partition

● The initial event written to each partition is
assigned offset 0

account-deposits

Partition 0

0 1 2 3

Partition 1

0 1 2

Partition 2

0 1 2 3 4

Partition Offsets

When events are written to a partition, they
are assigned an offset identifying the logical
position within the partition

● The initial event written to each partition is
assigned offset 0

● Subsequent events written to partitions are
assigned the next corresponding offset for
that partition

account-deposits

Partition 0

0 1 2 3

Partition 1

0 1 2

Partition 2

0 1 2 53 4

Partition Offsets

When events are written to a partition, they
are assigned an offset identifying the logical
position within the partition

● The initial event written to each partition is
assigned offset 0

● Subsequent events written to partitions are
assigned the next corresponding offset for
that partition

account-deposits

Partition 0

0 1 2 3 4

Partition 1

0 1 2

Partition 2

0 1 2 53 4

Partition Offsets

When events are written to a partition, they
are assigned an offset identifying the logical
position within the partition

● The initial event written to each partition is
assigned offset 0

● Subsequent events written to partitions are
assigned the next corresponding offset for
that partition

account-deposits

/var/lib/kafka/data/account-deposits-0
 00000000000058577485.log
 00000000000063458883.log
 00000000000068340367.log

Partition 0

Kafka Physical Storage

Partitions exist as physical files on Kafka
brokers (or in Tiered Storage)

● Each partition consists of one or more log
segments

account-deposits

/var/lib/kafka/data/account-deposits-0
 00000000000058577485.log
 00000000000063458883.log
 00000000000068340367.log

Partition 0

Kafka Physical Storage

Partitions exist as physical files on Kafka
brokers (or in Tiered Storage)

● Each partition consists of one or more log
segments

● The segment that was most recently
created is the active segment

account-deposits

/var/lib/kafka/data/account-deposits-0
 00000000000058577485.log
 00000000000063458883.log
 00000000000068340367.log

Partition 0

Kafka Physical Storage

Partitions exist as physical files on Kafka
brokers (or in Tiered Storage)

● Each partition consists of one or more log
segments

● The segment that was most recently
created is the active segment

○ New events are appended to the end of
the active segment

account-deposits

/var/lib/kafka/data/account-deposits-0
 00000000000058577485.log
 00000000000063458883.log
 00000000000068340367.log

Partition 0

Kafka Physical Storage

Partitions exist as physical files on Kafka
brokers (or in Tiered Storage)

● Each partition consists of one or more log
segments

● The segment that was most recently
created is the active segment

○ New events are appended to the end of
the active segment

● Partitions are optionally replicated to
additional Kafka brokers as defined in a
topic’s configuration

Kafka Brokers

Kafka is composed of a network of machines
called brokers

● A cloud instance, computer, or container
running the Kafka process

● Form a Kafka cluster

producer

Consumer
Group

consumer

consumer

consumer

Kafka Cluster

Broker 101

Broker 102

Broker 103

Kafka Brokers

Kafka is composed of a network of machines
called brokers

● A cloud instance, computer, or container
running the Kafka process

● Form a Kafka cluster

● Manage storage of topics, partitions, and
events

● Handle write and read requests producer

Consumer
Group

consumer

consumer

consumer

Kafka Cluster

Broker 101

Broker 102

Broker 103

Kafka Brokers

Kafka is composed of a network of machines
called brokers

● A cloud instance, computer, or container
running the Kafka process

● Form a Kafka cluster

● Manage storage of topics, partitions, and
events

● Handle write and read requests

● Manage replication of partitions
producer

Consumer
Group

consumer

consumer

consumer

Kafka Cluster

Broker 101

Broker 102

Broker 103

Kafka Brokers

Kafka is composed of a network of machines
called brokers

● A cloud instance, computer, or container
running the Kafka process

● Form a Kafka cluster

● Manage storage of topics, partitions, and
events

● Handle write and read requests

● Manage replication of partitions

● One broker, which is dynamically chosen
for fault tolerance, acts as the cluster
controller

producer

Consumer
Group

consumer

consumer

consumer

Kafka Cluster

Broker 101

Broker 102

Broker 103

Kafka Brokers

Kafka is composed of a network of machines
called brokers

● A cloud instance, computer, or container
running the Kafka process

● Form a Kafka cluster

● Manage storage of topics, partitions, and
events

● Handle write and read requests

● Manage replication of partitions

● One broker, which is dynamically chosen
for fault tolerance, acts as the cluster
controller

○ We will cover this in detail in the control
plane module

producer

Consumer
Group

consumer

consumer

consumer

Kafka Cluster

Broker 101

Broker 102

Broker 103

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Decoupling Producers and Consumers

● Producers and Consumers are decoupled

● Slow Consumers do not affect Producers

● Add Consumers without affecting Producers

● Failure of Consumer does not affect System

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Kafka Producers
Broker:
 log.retention.hours
Topic:
 retention.ms
Default is 7 days

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Kafka Producers

P

Broker 1 Broker 2 Broker 3

Topic1
partition1

Leader Follower

Topic1
partition1

Topic1
partition1

Producer Properties

acks=0

Reference
https://www.confluent.io/blog/exactly-once-semantics-are-p
ossible-heres-how-apache-kafka-does-it/

https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Kafka Producers

P

Broker 1 Broker 2 Broker 3

Topic1
partition1

Leader Follower

Topic1
partition1

Topic1
partition1

ack

Producer Properties

acks=1

Reference
https://www.confluent.io/blog/exactly-once-semantics-are-p
ossible-heres-how-apache-kafka-does-it/

https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Kafka Producers

P

Broker 1 Broker 2 Broker 3

Topic1
partition1

Leader Follower

Topic1
partition1

Topic1
partition1

Producer Properties

acks=all
min.insync.replica=2

ack

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Kafka Producers

P

Broker 1 Broker 2 Broker 3

Topic1
partition1

Leader Follower

Topic1
partition1

Topic1
partition1

Producer Properties

acks=all

{key: 1234 data: abcd} - offset 3345

Failed ack

Successful write

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Kafka Producers

P

Broker 1 Broker 2 Broker 3

Topic1
partition1

Leader Follower

Topic1
partition1

Topic1
partition1

Producer Properties

acks=all

{key: 1234, data: abcd} - offset 3345
{key: 1234, data: abcd} - offset 3346

retry

ack

dupe!

Reference
https://www.confluent.io/blog/exactly-once-semantics-are-p
ossible-heres-how-apache-kafka-does-it/

https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Kafka Producers

P

Broker 1 Broker 2 Broker 3

Topic1
partition1

Leader Follower

Topic1
partition1

Topic1
partition1

Producer Properties

acks=all
enable.idempotence=true
max.inflight.requests.per.connection=5
retries > 0

(pid, seq) [payload]
(100, 1) {key: 1234, data: abcd} - offset 3345
(100, 1) {key: 1234, data: abcd} - rejected, ack re-sent
(100, 2) {key: 5678, data: efgh} - offset 3346

retry

ack

no dupe!

Reference
https://www.confluent.io/blog/exactly-once-semantics-are-p
ossible-heres-how-apache-kafka-does-it/

https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Kafka Consumers

Consumers have a position of their own

Consumers have a position of their own

A basic Java consumer
 final Consumer<String, String> consumer = new KafkaConsumer<String, String>(props);

 consumer.subscribe(Arrays.asList(topic));

 try {

 while (true) {

 ConsumerRecords<String, String> records = consumer.poll(100);

 for (ConsumerRecord<String, String> record : records) {

 -- Do Some Work --

 }

 }

 } finally {

 consumer.close();

 }

}

A basic consumer

C

Group consumption

CCC1

CCC2

Group consumption

0 1

2 3

Group consumption

0 1

2 3

Group consumption

1

2 3

0, 3

Kafka Architecture

Architecture

Topic, Partitions and Segments

Topic, Partitions and Segments

Physical layout of kafka logs

Processing

Filter Events to a Separate Stream in
Real Time

Partition 0

Partition 1

Partition 2

Stream: Blue and Red Events
Partition 0

Partition 1

Partition 2

Stream: Blue Events Only

STREAM
PROCESSING

-- pq1
CREATE STREAM high_readings AS
 SELECT sensor,
 reading,
 UCASE(location) AS location
 FROM readings
 WHERE reading > 41
 EMIT CHANGES;

Connect All Applications and
Data Sources and Sinks

Flexibility Simplicity

Producer/Consume
r

Kafka Streams API

● subscribe()
● poll()
● send()
● flush()

● filter()
● map()
● join()
● aggregate()

ksqlDB

● Select…from…
● Join…where…
● Group by..

Connect All Applications and
Data Sources and Sinks

subscribe(), poll(), send(),
flush(), beginTransaction(), …

KStream, KTable, filter(), map(),
flatMap(), join(), aggregate(),
transform(), …

CREATE STREAM, CREATE TABLE,
SELECT, JOIN, GROUP BY, SUM, …

Shoulders of Streaming Giants

KSQL UDFs

Stream
Processing

is the toolset for
dealing with
events

as they move!

Interaction with Kafka

Kafka
(data)

ksqlDB
(processing)

JVM application
with Kafka Streams (processing)

Does not run on
Kafka brokers

Does not run on
Kafka brokers

read,
write

network

read,
write

network

Generating random data for
Kafka

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

Generating random traffic for Kafka

● Different solutions
○ Datagen (Kafka connect based) is the official solution

■ Needs a Kafka connect environment (not immediate to setup)
■ In the managed version, can’t be customised with your data
■ In the managed version, can’t for example do compression
■ Not managing real relations between data

○ There are other tools
■ Not managing relations, or complex to use, or abandoned or not

flexible enough

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> apropos jr

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> apropos jr

● Json Random generator
● Just another Random generator
● Similar to JQ, which is one of the tools I use most

https://stedolan.github.io/jq/
● …

https://stedolan.github.io/jq/

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> apropos jr

● Json Random generator
● Just another Random generator
● Similar to JQ, which is one of the tools I use most

https://stedolan.github.io/jq/
● …

https://stedolan.github.io/jq/

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> history | grep jr

● Had to generate traffic for a customer, on the fly, with just an example of a
json

● They asked how much this stuff would be compressed by the producer,
which obviously varies with:
○ different algorithms
○ different throughput
○ different batching kafka configuration
○ can’t use a single json to do that, would be compressed too much

● Existing tools couldn’t easily answer this question, and for sure not in a 5
minutes time frame, for example:
○ Datagen with custom objects is complex to setup
○ Managed Datagen on Confluent Cloud can’t use custom objects and

can’t compress

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> history | grep jr

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> history | grep jr

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> whois jr

● Is a template system, leveraging wonderful Golang text/template
package

● Has a CLI but also REST APIs (in beta)
● Can generate anything you could write a template for (so, not really tied

to json)
● Embeds a specialized fake library (no use of existing faking libraries)
● Has automatic integrity for related fields (city, zip, mobile, phone,

email/company, etc)
● Can maintain integrity between objects generated (relations)
● It’s been designed for Kafka, but can directly output to Elastic, Redis,

MongoDB, S3
● Can talk to Confluent Schema Registry for Kafka, serializing in Avro/Json

Schema

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> man jr
● You choose your template from the available templates
● You choose -n number of objects to generate at each pass
● You choose -f frequency
● You choose -d duration

jr template list
jr template run net_device | jq
jr template run -n 2 net_device | jq
jr template run -n 2 -f 100ms net_device | jq
jr template run -n 2 -f 100ms -d 5s net_device | jq

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> man template
● There are 3 different templates to control jr

○ Key template, which defaults to null
○ Output template, which defaults to Value only: {{.V/n}}
○ Value template, which you control in two different ways

■ Embedding directly in the command line (--embedded)
■ By name (user,net_device, etc) for the OOTB templates

jr template list
jr template show net_device
jr template show user
jr template run --key '{{key "ID" 100}}' user
jr template run --key '{{key "ID" 100}}' --outputTemplate '{{.K}} {{.V}}' net_device
jr template run --key '{{key "ID" 100}}' --embedded '{{name}} {{email}}' --kcat

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> cat cli

● You have 3 resources: emitters, templates and functions
○ You can list, show and run templates
○ You can list available functions and test directly (--run) without

writing a template. There are 126 functions at the moment, and
growing

○ Emitters are a new concept: you configure different emitters all
at once, with different frequency and other parameters, and then
you just list/show/run the emitters with a single command

jr function list -c finance
jr function list card --run
jr function list regex --run
jr emitter list
jr emitter run

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> man functions

● There are 126 functions at the moment, categorized as
○ People
○ Text utilities
○ Network
○ Context
○ Address
○ Finance
○ Math
○ Phone

cat .jr/templates/data/it/movie
jr template run --template '{{from "movie"}}'
jr template run --locale IT --template '{{from_n "beer" 3}}'
jr template run --locale IT --template '{{from_n "actor" 15}}'

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> cat automatic_integrity

● Some functions are “smart”, for example:
○ Mobile phones are generated by “inverse” regular expressions, using

mobile company numbers valid for the chosen country (--locale)
○ Streets, cities, zip codes, phone prefix and more are all localizable and

coherent without doing anything special
○ your work email is generated automatically using - if already in the

template - previously generated name, surname and company

jr template run --template '{{name}} {{email}}'
jr template run --template '{{name}} {{surname}} {{company}} {{email_work}}'
jr template run user | jq
jr --locale IT template run user | jq
jr --locale FR template run user | jq

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> echo “hello” 2>&1 >> $LOG

● You can choose different output for jr:
○ stdout (default)
○ kafka
○ redis
○ mongo
○ elastic
○ s3

● Each output needs a specific configuration
● Output can easily be extended implementing Producer interface

jr template run user -o kafka
jr template run user -o kafka -t topic_user -a
jr template run user -o mongo

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> select * from customers where custID='X1001';

● Relational Integrity is where most of similar tools fall. To generate “related”
data, they end up having long lists of prebuilt json documents, not at all
random. Basically they become equivalent to:
○ kcat -P -b localhost:9092 -t topic -K: -l prebuilt_json.txt

● jr has two features to help with integrity
○ preload to create a bunch of events at the beginning
○ context functions, especially add_v_to_list, random_n_v_from_list and

random_v_from_list

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> select * from customers where custID='X1001';

● With preload and context you can for example:
○ generate 1000 random products all at once to a topic
○ generate 100 random customers all at once and then add 1 customer

every minute
○ stream 5 random orders every 100ms by existing customers with

existing products
● To test your streaming apps (KStream, ksqlDB, Flink), you definitely need

relations!

jr function list -c context
jr template show shoe
jr template show shoe_customer
jr template show shoe_order
jr template show shoe_clickstream
jr emitter run

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> more | grep future

● We need your help!
○ Close issues if you can: https://github.com/ugol/jr/issues
○ Localizations in different languages
○ Useful new functions for templates
○ Useful pre-configured emitters for complex use cases
○ New output Producers (every k/v store is a candidate)

● Pls star, watch and fork the project on Github!
○ The brew guys told us that we need a minimum of:
○ 30 forks
○ 30 watchers
○ 75 stars
○ (if you want to brew install jr!)

https://github.com/ugol/jr/issues

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> more | grep links

● Links
○ Issues https://github.com/ugol/jr/issues
○ Documentation https://jrnd.io/
○ Blog first part:

https://dev.to/ugol/jr-quality-random-data-from-the-command
-line-part-i-5e90

○ Blog second part:
https://dev.to/ugol/jr-quality-random-data-from-the-command

-line-part-ii-3nb3
○ Blog third part: SOON

https://github.com/ugol/jr/issues
https://jrnd.io/
https://dev.to/ugol/jr-quality-random-data-from-the-command-line-part-i-5e90
https://dev.to/ugol/jr-quality-random-data-from-the-command-line-part-i-5e90
https://dev.to/ugol/jr-quality-random-data-from-the-command-line-part-ii-3nb3
https://dev.to/ugol/jr-quality-random-data-from-the-command-line-part-ii-3nb3

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> more | grep questions?

Free eBooks Designing Event-Driven Systems
Ben Stopford

Kafka: The Definitive Guide
Neha Narkhede, Gwen Shapira, Todd
Palino, I and II Edition

Making Sense of Stream Processing
Martin Kleppmann

I ❤ Logs
Jay Kreps

http://cnfl.io/book-bundle

