Accelerating the performance of distributed stream processing systems with in-network computing

Boris Koldehofe

@DEBS 2013

DEBS_Talk_In_Network_Computing_Boris_Koldehofe_v06_27.06.2023_cleaned.pptx

30-Jun-23

Short Introduction Boris Koldehofe

Distributed and Operating Systems Group Technical University of Ilmenau

Research

- Distributed data analytics
- Computer system principles
- Reliability and security

Specific Focus

- Distributed Event-based systems (DEBS)
- In-Network Computing

Data Driven Applications

Nowadays everywhere!

 Autonomous driving, smart factories, smart cities, telemedicine, and many more

MAPE loop of IoT services:

- Monitor and Analyze "Things"
- Plan and Execute Processes

Insights into data key to adapt applications

- Billions of things
- Exabytes of context knowledge

But Performance and Low Latency is not straight forward!

Why low latency response?

The Bottleneck in Data Movements

In-Network Computing Technologies accelerating performance

Examples in the context of Distributed Event-Based Systems

Conclusion

Low Latency responses

Often relates to highly accurate time stamps of events

Manufacturing process

- Understand correct position over time
- Low Jitter in Communications

Telemedicine

Understand situations with very low reaction time

Financial applications

- Algorithmic trading
- Very low responses in detecting and analyzing packets
 - See DEBS 2020 Grand Challenge

DEBS 2023 Talk In-Network Computing by Boris Koldehofe

5

Improving Timestamp Accuracy Technological developments

5G and even 6G Campus networks

- Goal interconnect processors fast
- 100µs 1ms delays, high mobility

TSN

 Real-time guarantees for industrial applications

Edge Computing

Offload Computations

Accelerators

- Computation
- I/O
- Protocols / Architectures

Timestamp inaccuracy	Location Inaccruracy			
1s	10m			
1ms	10cm			
1µs	0.1mm			

Moving Object of 36km/h

DEBS / Real-Time Analytics

Correlations on data stream

- With low end to end delay
- High accuracy detection

7

ILMENAU

Paradigm:

- Operators identify pattern on partial data stream: window
- E.g. CEP operator, Filter, Neural Network, Deep Learning Model

DEBS 2023 Talk In-Network Computing by Boris Koldehofe

Distributed Real-Time Analytics

DEBS 2023 Talk In-Network Computing by Boris Koldehofe

ILMENAU

Boris Koldehofe. Principles of building scalable and robust event-based systems. Technische Universität Darmstadt, July 2019.

TECHNISCHE UNIVERSITÄT The SPIRIT of science

ILMENAU

Meeting Performance of Time Sensitive Distributed Applications

Cyberphysical application

- Low latency?
- Predictable performance?

Bottlenecks in data movement and processing

Requires much more flexibility in using mechanisms of the distributed infrastructure!

Lack for Flexibility: Communication Protocols and Operating Systems

Hardcoded in network appliances

DEBS 2023 Talk In-Network Computing by Boris Koldehofe

The **SPIRIT** TECHNISCHE UNIVERSITÄT

Time for data to bypass the kernel

ILMENAU

Ingredients for Increased Flexibility

Programable hardware

- P4 Switches
- NetFPGA

New networking paradigms

- Software-Defined Networking
- Network Function Virtualization

Significant changes in the infrastructure

- Edge Data Center
- Technologies & Concepts
 - DPDK, P4, OpenFlow, RDMA

Enabler for in-network computing!

th TECHNISCHE UNIVERSITÄT The **SPIRIT** ILMENAU

12

In-Network Computing

Idea enable computations on the data path

Traditionally,

- Packet header processing,
 - e.g., routing, firewall, packet classification, load balancing, deep packet inspection

Often

- Match/action pipeline model of networking hardware
- Management interface, specific programming interfaces, ...

Evolution: In-Network Computing resources

Towards flexible, high performance, and energy-efficient in-network computing

ASIC = "fixed silicon chip for special purpose, e.g. packet switching"

th

ILMENAU

Performance Acceleration via INP

INP resources can reduce the time to move data, e.g.

- DPDK: circumvent OS
- OS Kernel: Enhance Communication Protocol
- NIC: process ahead of OS
- Switch : closer to producer/ consumer

15

Performance Acceleration via INP

The SPIRIT TECHNISCHE UNIVERSITÄT

Is INP = Low Latency? High Performance Packet Analytics in P4STA

Processors. In Proceedings of the IEEE/IFIP Network Operations and Management Symposium (NOMS 2020)

ILMENAU

of science

Challenges in using them for Real-time analytics

- Specific domain specific programming models
 - OpenFlow, P4, Verilog

Breaking distribution transparency

E.g., applications does not work on byte streams, but packets!

Increased heterogeneity

Headers may leak information on the packet content

Why low latency response?

The Bottleneck in Data Movements

In-Network Computing Technologies accelerating performance

Examples in the context of Distributed Event-Based Systems

Conclusion

Publish/Subscribe and Performance

Efficient distribution by means of overlays

Bandwidth efficient overlays

BUT big performance gap

- Overlay
- Underlay

VS

The **SPIRIT**

of science

High Performance Publish/Subscribe: Basic Idea

Reduce the overhead:

- Message duplications
- Matching subscriptions at the hardware

Bowmik, Tariq, Koldehofe, Kohler, Dürr, Rothermel. **High Performance Publish/Subscribe Middleware in Software-defined Networks.** IEEE Transactions on Networking (ToN), 2016.

TECHNISCHE UNIVERSITÄT

ILMENAU

The SPIRIT

of science

High Performance Publish/Subscribe: Basic Idea

Reduce the overhead:

- Message duplications
- Matching subscriptions at the hardware

Bowmik, Tariq, Koldehofe, Kohler, Dürr, Rothermel. **High Performance Publish/Subscribe Middleware in Software-defined Networks.** IEEE Transactions on Networking (ToN), 2016.

SDN-based Publish/Subscribe Middleware

Bowmik, Tariq, Koldehofe, Kohler, Dürr, Rothermel. **High Performance Publish/Subscribe Middleware in Software-defined Networks.** IEEE Transactions on Networking (ToN), 2016. The SPIRIT TECHNISCHE UNIVERSITÄT

23

Configuration Based on OpenFlow

Forwards packets from in ports to out ports by means of flow table, e.g.,

In	VLAN	I	Ethernet		IP			ТСР	
port	ID	SA	DA	Туре	SA	DA	Prot	Src	Dst

Controller can add, change and remove flow entries using OpenFlow

RQ: How to represent and match content-based subscriptions, e.g. in OpenFlow?

Bowmik, Tariq, Koldehofe, Kohler, Dürr, Rothermel. **High Performance Publish/Subscribe Middleware in Software-defined Networks.** IEEE Transactions on Networking (ToN), 2016.

Subscription and event matching in flow table

- 1. Generate binary representation based on spatial indexing
- 2. Map binary representation to IPv6 Multicast address
- Coexistence with other services

Approach overview

Subscription/Advertisement

Sent to controller with predefined IP address

Controller optimizes topology

- Establish paths between publishers and subscribers
- Paths are established along a tree

Events

- Directly sent to the network
- IP_{Prefix} bit string

of science

Result: Forwarding performance

Bowmik, Tariq, Koldehofe, Kohler, Dürr, Rothermel. High Performance Publish/Subscribe Middleware in Software-defined Networks. IEEE Transactions on Networking (ToN), 2016.

th **TECHNISCHE UNIVERSITÄT** ILMENAU

35

The SPIRIT

of science

40

45

Properties

OpenFlow-based Management enables expressive subscription management

But requires from every publisher/ subscriber

Understand the encoding

Relied on specific Header Fields!

But would work in general using a big field or mask

More Complex, state-full not considered!

Extending to P4 based INP

- P4 supports Programming Reconfigurable Match Action Pipeline
- Define own Protocol Headers to be used by DEBS

Define Matching Operations for specific Header fields

```
typedef bit<32> timestamp_t;
typedef bit<16> type_t;
typedef bit<8> attribute_t;
typedef bit<8> value_t;
```

```
header event_h {
   type_t type; /* example: weather. */
   timestamp_t timestamp; /* event occurance time. */
   attribute_t attribute; /* example: humidity, temperature. */
   value_t value; /* example: 45% humidity and 23 degrees celsius temperature. */
}
```


Ralf Kundel, Christoph Gärtner, Manisha Luthra, Sukanya Bhowmik, Boris Koldehofe. Flexible Content-based Publish/Subscribe over Programmable Data Planes. In Proceedings of the IEEE/IFIP Network Operations and Management Symposium (NOMS 2020)

P4: Enhancing Stateful Operations

Limited Support for Stateful Operations

Many pitfalls:

- No sharing of registers between different stages of the pipeline
- Exclusive read or write operations
- Packet cannot iterate over all registers

However, can be used to model for specific platforms stateful CEP operators!

Kohler, Mayer, Dürr, Maaß, Bhowmik, and Rothermel. *P4CEP: Towards In-Network Complex Event Processing.* In Proceedings of the 2018 Morning Workshop on In-Network Computing (NetCompute '18, pp. 33–38. https://doi.org/10.1145/3229591.3229593

Supporting parallel operator execution with P4

Operator Parallelization is a common method in DEBS

Splitter:

- Partition streams in independent processable windows
- Operator instances return results to the merger
- Merger coordinates streams

Processing rate of the splitter is the bottleneck in scaling operators

Can be done already on the path between producers and consumers

P4 Splitter: Window Operators

Idea: perform stream partitioning via INP

Problems:

- Dynamically expressing multiple distinct window semantics for operators
 - Time-based, Count based, …
- Needs to be performed in line-rate with
 - Match Action Logic
 - Registers state

Basic Idea / Procedure

- 1. Each stream identified by an id \rightarrow Matching events
- 2. Window specifications can be dynamically added/removed
- with respect to a unique stream id (Dynamically Matching rules)
- 3. Window state is captured via registers
- 4. Incoming events trigger updates to window state (dependent on window)
- 5. Will be added to a multicast group that sends an event packet to all destinations

Bochra Boughzala, Christoph Gärtner, and Boris Koldehofe. Window-based Parallel Operator Execution with In-Network Computing. Proceedings of the 16th ACM International Conference on Distributed and Event-based Systems (DEBS '22), pp. 91–96, ACM press. th

ILMENAU

TECHNISCHE UNIVERSITÄT

Example

Specifying a window semantics:

- e.g. Count-based Sliding Window
 - stream ID idx
 - parallelism degree N
 - window size *n*
 - window shift δ , $\delta \leq n$ (counting)

Round-robin load-balancing over 5 operator instances with n = 4, $\delta = 1$.

Bochra Boughzala, Christoph Gärtner, and Boris Koldehofe. Window-based Parallel Operator Execution with In-Network Computing. Proceedings of the 16th ACM International Conference on Distributed and Event-based Systems (DEBS '22), pp. 91–96, ACM press.

Challenge: How to evaluate such a system?

Although P4 facilitates programming INP hardware, it is time consuming

One device costs ~5000-10000€

Huge Development effort

Don't expect large scale comparison or a baseline comparison with Apache Flink

In general baseline comparisons

Being faster neither straight forward nor very insightful

What did we evaluate:

P4STA for Packet generation and validation

What is the latency introduced by a INP

Measure feasible throughput

Measure resources

How many streams, operators, and windows can be supported

Some Findings Throughput and Low Latency

High Throughput low and stable latency

Throughput depends on window semantics

- Load generator is a bottleneck
- Higher parallelization degree and overlap increases bandwidth

Latency

Independent of count-base vs time-based

Measurement	CBTW	CBSW	TBTW	TBSW
Average Latency	1.76 μs	1.86 μs		1.87 μs
Minimum Latency	1.72 μs	1.8 μs		1.83 μs
Maximum Latency	1.8 μs	1.92 μs		1.93 μs

Stream	$\Sigma = (n, \delta)$	N
CBTW1	$\Sigma = (n = 100, \delta = 100)$	N = 6
CBTW2	$\Sigma = (n = 10, \delta = 10)$	N = 4
CBSW1	$\Sigma = (n = 5, \delta = 1)$	N = 6
CBSW2	$\Sigma = (n = 3, \delta = 1)$	N = 4

The **SPIRIT**

Bochra Boughzala, Christoph Gärtner, and Boris Koldehofe. **Window-based Parallel Operator Execution with In-Network Computing.** Proceedings of the 16th ACM International Conference on Distributed and Event-based Systems (DEBS '22), pp. 91–96, ACM press.

37

Some findings Resource Usage

Resource Usage Determines Scalability

Comprises

- Stages, Tables, and Register Arrays
- Tofino1 has max 12 stages

Resource	CBTW	CBSW	TBTW	TBSW
Stages	6	6	7	8
Match Tables	12	12	18	20
Registers Arrays	3	2	6	7

- Could deploy with line rate-performance
 - Count-Based windows : 457k operators, 286k concurrent streams
 - Time-based windows: 362k operators and up to 65k streams

Interesting Approaches in INP for Data Driven Applications

Networking Community is working on many abstractions for Stateful INP Challenge: understand practicality and applicability in Middleware services

Adapted from Vishal Shrivastav presentation at SIGCOMM

But also very interesting work in distributed computing!

E.g. "P4xos: Consensus as a Network Service", IEEE/ACM Transactions on Networking, 2020.

th

ILMENAU

Everything on Performance?

Not really!

Data movements are the cause for high energy efficiency! Programmable processing Very high bandwidth Moving to sustainable computing components! Limited flexibility **Recent example** TCAmM^{CogniGron}: Energy Efficient Memristor-Based TCAM for Data Plane **Match-Action Processing**

ASIC = "fixed silicon chip for special purpose, e.g. packet switching"

Saad Saleh, Anouk S. Goossens, Tamalika Banerjee, and Boris Koldehofe. TCAmM^{CogniGron}: Energy Efficient Memristor-Based TCAM for Match-Action Processing. In Proceedings of the 7th International Conference on Rebooting Computing (ICRC 2022). IEEE, 2022.

 Computational Intelligence inside the network?

th

ILMENAU

TECHNISCHE UNIVERSITÄT

The SPIRIT

40

Conclusion

Distributed Real-Time Analytics is a fundamental and challenging paradigm in the Internet of Things

Accelerators based on In-Network Computing

- Reduce performance bottlenecks
- Utilize the Distributed Infrastructure more efficient

Distributed systems mechanisms

- Flexible usage of heterogeneous resources
- No single mechanism fits them all

Future Research:

- Better understanding of Distributed Computing + In-Network computing
- Energy-efficiency of In-Network Computing

Questions

Ralf Kundel and Fridolin Siegmund and Rhaban Hark and Amr Rizk and Boris Koldehofe. Network Testing Utilizing Programmable Networking Hardware. IEEE Communications Magazine, 7 pages, IEEE 2022.

Bowmik, Tariq, Koldehofe, Kohler, Dürr, Rothermel. High Performance Publish/Subscribe Middleware in Software-defined Networks. IEEE Transactions on Networking (ToN), 2016.

Bochra Boughzala, Christoph Gärtner, and Boris Koldehofe. Window-based Parallel Operator Execution with In-Network Computing. Proceedings of the 16th ACM International Conference on Distributed and Event-based Systems (DEBS '22), pp. 91–96, ACM press.

Prof. Dr. Boris Koldehofe

Technische Universität Ilmenau Department of Computer Science and Automation Distributed Systems and Operating Systems Group

