
30-Jun-23

1DEBS_Talk_In_Network_Computing_Boris_Koldehofe_v06_27.06.2023_cleaned.pptx

Accelerating the performance of distributed stream
processing systems with in-network computing

Boris Koldehofe

@DEBS 2013

𝜔𝜔

2 2

Short Introduction
Boris Koldehofe
Distributed and Operating Systems Group
Technical University of Ilmenau

Research
Distributed data analytics
Computer system principles
Reliability and security

Specific Focus
Distributed Event-based systems (DEBS)
 In-Network Computing

DEBS 2023 Talk In-Network Computing by Boris Koldehofe

3 3

Data Driven Applications
Nowadays everywhere!
 Autonomous driving, smart factories, smart

cities, telemedicine, and many more

MAPE loop of IoT services:
Monitor and Analyze “Things”
 Plan and Execute Processes

Insights into data key to adapt applications
 Billions of things
 Exabytes of context knowledge

DEBS 2023 Talk In-Network Computing by Boris Koldehofe

Distributed Event-Based Systems (DEBS) are key concepts to support the loop!But Performance and Low Latency is not
straight forward!

4 4

Outline
Why low latency response?

The Bottleneck in Data Movements

In-Network Computing Technologies accelerating performance

Examples in the context of Distributed Event-Based Systems

Conclusion

DEBS 2023 Talk In-Network Computing by Boris Koldehofe

5 5

Low Latency responses
Often relates to highly accurate time stamps of

events

Manufacturing process
 Understand correct position over time
 Low Jitter in Communications

Telemedicine
 Understand situations with very low reaction

time

Financial applications
 Algorithmic trading
 Very low responses in detecting and analyzing

packets
 See DEBS 2020 Grand Challenge

DEBS 2023 Talk In-Network Computing by Boris Koldehofe

Licensed in Adobe Stocks

Licensed in Adobe Stocks

6 6

Improving Timestamp Accuracy
Technological developments
5G and even 6G Campus networks
Goal interconnect processors fast
 100µs - 1ms delays, high mobility

TSN
Real-time guarantees for industrial

applications

Edge Computing
Offload Computations

Accelerators
Computation
 I/O
 Protocols / Architectures

Timestamp
inaccuracy

Location
Inaccruracy

1s 10m

1ms 10cm

1µs 0.1mm

DEBS 2023 Talk In-Network Computing by Boris Koldehofe

Moving Object of 36km/h

Licensed in Adobe Stocks

7 7

DEBS / Real-Time Analytics
Correlations on data stream
With low end to end delay
High accuracy detection

Paradigm:
Operators identify pattern on partial data

stream: window
 E.g. CEP operator, Filter, Neural Network,

Deep Learning Model

DEBS 2023 Talk In-Network Computing by Boris Koldehofe

B C A B C A

𝜔𝜔

𝑊𝑊𝑖𝑖
𝑊𝑊𝑗𝑗

Location
Speed Situations

Patterns
Filter

Acceleration

… …

time

𝜔𝜔→

Input Result

Seq(A,B)

… …

in Wj

P CProducers Consumers

8 8

Distributed Real-Time Analytics
Execute operator network on a distributed

infrastructure
Increase Scalability and Performance

DEBS 2023 Talk In-Network Computing by Boris Koldehofe

Optimization subject to
potentially conflicting goals
 Decoupling producers and consumers
 Low end-to-end delay
 High accuracy
…

Traffic
Event

P

C

𝜔𝜔Producers

Consumers

Correlation

9 9Boris Koldehofe. Principles of building scalable and robust event-based systems. Technische Universität Darmstadt, July 2019.

Adaptive Distributed Application
P C 𝜔𝜔Producer Consumer Correlation

Pu
b/

Su
b

C
EP

Real-Time Analytics
Event PatternNotificationPublications

Compute
Centric

Adaptation

Network
Centric

 Adaptation

Subject to Low Latency Bandwidth Mobility Reliability Security

Mechanisms
Event

Distribution
Operator
Execution

Operator
Migration

Operator
Recovery

Access
Control

Building on Virtual
Compute

SDN

Ev
en

t M
od

el
O

pe
ra

to
r M

od
el

Q
ue

ry
 L

an
gu

ag
esScalable and Network Centric Adaptation

…

Virtual
Sensors

Energy

10 10

Meeting Performance of Time Sensitive Distributed
Applications
Cyberphysical application
 Low latency?
 Predictable performance?

DEBS 2023 Talk In-Network Computing by Boris Koldehofe

𝜔𝜔

Bottlenecks in data movement and processing

Data Compute
Communications

Requires much more flexibility in using mechanisms of the distributed infrastructure!

Licensed in Adobe Stocks

11 11

Lack for Flexibility: Communication Protocols and
Operating Systems
Hardcoded in network appliances Time for data to bypass the kernel

DEBS 2023 Talk In-Network Computing by Boris Koldehofe

Communications

12 12

Ingredients for Increased Flexibility
Programable hardware
 P4 Switches
NetFPGA

New networking paradigms
 Software-Defined Networking
Network Function Virtualization

Significant changes in the infrastructure
 Edge Data Center
 Technologies & Concepts
 DPDK, P4, OpenFlow, RDMA

Enabler for in-network computing!
DEBS 2023 Talk In-Network Computing by Boris Koldehofe

Barefoot Tofino FPGA

13 13

In-Network Computing
Idea enable computations on the data path

Traditionally,
 Packet header processing,
 e.g., routing, firewall, packet classification,

load balancing, deep packet inspection

Often
Match/action pipeline model of networking

hardware
Management interface, specific programming

interfaces, …

DEBS 2023 Talk In-Network Computing by Boris Koldehofe

P C

Producers Consumers

𝜔𝜔𝜔𝜔

𝜔𝜔

𝜔𝜔

14 14

Evolution: In-Network Computing resources
Towards flexible, high performance, and energy-efficient in-network computing

DEBS 2023 Talk In-Network Computing by Boris Koldehofe

Data Plane

Hardware

Milestone

2008

standard
ASIC

2009

CPU
x86

2014

programmable
ASIC-Pipe

Stone Age + x

standard
ASIC

. . .

 “Blackbox” 
 “Whitebox”
 Software-defined

Networking
 Controller

Interface
 Still “fixed” ASIC

 “Why hardware?”
 Just do it in C!
 Standard Server
 DPDK
 Performance?
 Efficiency?

 Programmable
ASIC for packet
processing
 Very high bandwidth
 Limited flexibility

ASIC = „fixed silicon chip for special purpose, e.g. packet switching”

Hybrid Designs, e.g.
Memeristive

Devices

 Energy Efficient
Switching?
 Computational

Intelligence
inside the
network?

CogniGron –
Groningen

 “Blackbox”
 Vendor-lock

20xy

15 15

Performance Acceleration via INP
INP resources can reduce the time to move

data, e.g.
DPDK: circumvent OS
OS Kernel: Enhance Communication

Protocol
NIC: process ahead of OS
 Switch : closer to

 producer/ consumer

DEBS 2023 Talk In-Network Computing by Boris Koldehofe

User Space Driver

Kernel
Space

UIO Driver

User
Space

NIC

DPDK PMD

Stack

System Calls

CSRs

Memory (RAM)

Packet Data

Configuration

Descriptors

DMA

Descriptor
Rings

1

2

From Intel DPDK
University Lecture

DPDK Application

Descriptors

𝜔𝜔

16 16

Performance Acceleration via INP
INP resources can reduce the time to move

data, e.g.
 DPDK: circumvent OS
 OS Kernel: Enhance Communication Protocol
 NIC: process ahead of OS
 Switch : closer to

 producer/ consumer

INP resources can accelerate the processing
time
 Efficient Matching : TCAM
 Transformation and routing

INP enables dynamic exchange of functionality

DEBS 2023 Talk In-Network Computing by Boris Koldehofe

𝜔𝜔

17 17

Is INP = Low Latency?
High Performance Packet Analytics in P4STA

actual fiber
length

avg.
latency

std. dev. loss

1 m 1.06 m 107.830 ns 1.46 ns 0 packets

2 m 2.08 m 112.850 ns 1.61 ns 0 packets

3 m 3.18 m 118.336 ns 1.52 ns 0 packets

10 m 10.12 m 152.883 ns 1.61 ns 0 packets

P4 timestamping:

P4-Switch: “Stamper”

Server
1

Server
N

…

DUT

t1t2Ext.-Host

Kundel, Siegmund, Blendin, Rizk, Koldehofe. P4STA: High Performance Packet Timestamping with Programmable Packet
Processors. In Proceedings of the IEEE/IFIP Network Operations and Management Symposium (NOMS 2020)

18 18

Challenges in using them for Real-time analytics
Specific domain specific programming

models
OpenFlow, P4, Verilog

Breaking distribution transparency
 E.g., applications does not work on byte

streams, but packets!

Increased heterogeneity

Headers may leak information on the packet
content

DEBS 2023 Talk In-Network Computing by Boris Koldehofe

19 19

Outline
Why low latency response?

The Bottleneck in Data Movements

In-Network Computing Technologies accelerating performance

Examples in the context of Distributed Event-Based Systems

Conclusion

DEBS 2023 Talk In-Network Computing by Boris Koldehofe

20 20

Publish/Subscribe and Performance
Efficient distribution by means of overlays

Bandwidth efficient overlays

BUT big performance gap
 Overlay
 Underlay

Underlay

Overlay
vs

DEBS 2023 Talk In-Network Computing by Boris Koldehofe

21 21

Reduce the overhead:
 Message duplications
 Matching subscriptions at the hardware

High Performance Publish/Subscribe:
Basic Idea

Publisher:
Notification(position:
 xpos = 50, ypos=30)

Subscriber: position
40 > xpos > 60
25 > ypos > 35

Subscriber: position
35 > xpos > 55
22 > ypos > 32

Bowmik, Tariq, Koldehofe, Kohler, Dürr, Rothermel. High Performance Publish/Subscribe Middleware in Software-defined Networks.
IEEE Transactions on Networking (ToN), 2016.

Duplicates!

B

C1

C2

P

Overlay-based

22 22

Reduce the overhead:
 Message duplications
 Matching subscriptions at the hardware

High Performance Publish/Subscribe:
Basic Idea

22

Publisher:
Notification(position:
 xpos = 50, ypos=30)

Subscriber: position
40 > xpos > 60
25 > ypos > 35

Subscriber: position
35 > xpos > 55
22 > ypos > 32

C1

C2

P

No
Duplicates!

B

Hardware
Fitering!

B

Bowmik, Tariq, Koldehofe, Kohler, Dürr, Rothermel. High Performance Publish/Subscribe Middleware in Software-defined Networks.
IEEE Transactions on Networking (ToN), 2016.

Underlay-based

23 23

SDN-based Publish/Subscribe Middleware

SDN Controller

…

OpenFlow messages

…

SubscriptionAdvertisement
Event

Subscriber: position
40 > xpos > 60
25 > ypos > 35

Publisher:
Will send positions

P C

Bowmik, Tariq, Koldehofe, Kohler, Dürr, Rothermel. High Performance Publish/Subscribe Middleware in Software-defined Networks.
IEEE Transactions on Networking (ToN), 2016.

24 24

Configuration Based on OpenFlow
Forwards packets from in ports to out ports by means of flow table, e.g.,

Controller can add, change and remove flow entries using OpenFlow

P C

DA 2001::2428:2312

SA = 2001::1428:57ab
in

out

Flow
Table

(SA,DA)
unknown (in,DA,SA)→out

SDN Controller

Flow
Table

In
port

VLAN
ID

Ethernet IP TCP
SA DA Type SA DA Prot Src Dst

Bowmik, Tariq, Koldehofe, Kohler, Dürr, Rothermel. High Performance Publish/Subscribe Middleware in Software-defined Networks.
IEEE Transactions on Networking (ToN), 2016.

RQ: How to represent and match content-based subscriptions, e.g. in OpenFlow?

25 25

Subscription and event matching in flow table

1 10 101

Mapping to IPv6 ff0e:a000:*

IP Prefix 100d1= xpos

d 2
=y

po
s

0
0

100

1. Generate binary representation based on spatial indexing
2. Map binary representation to IPv6 Multicast address
 Coexistence with other services

Bowmik, Tariq, Koldehofe, Kohler, Dürr, Rothermel. High Performance Publish/Subscribe Middleware in Software-defined Networks.
IEEE Transactions on Networking (ToN), 2016.

26 26

Approach overview
Subscription/Advertisement
 Sent to controller with predefined IP address

Controller optimizes topology
 Establish paths between publishers and

subscribers
 Paths are established along a tree

Events
Directly sent to the network
 IPPrefix ∘ bit string

R1

R2 R3

R4

R5 R6

P

Adv = 1

10*  R5

10*  S1

Sub = 10

SDN Controller

Advertisement/Subscriptions

C1

Bowmik, Tariq, Koldehofe, Kohler, Dürr, Rothermel. High Performance Publish/Subscribe Middleware in Software-defined Networks.
IEEE Transactions on Networking (ToN), 2016.

e:101

C2

Sub = 11

1*  R3

11*  R6

10*  R310*  R3

27 27

Result: Forwarding performance

Hierarchical fat-tree topology
10 Open vSwitches and 8 end-hosts
10,000 events

Bowmik, Tariq, Koldehofe, Kohler, Dürr, Rothermel. High Performance Publish/Subscribe Middleware in Software-defined Networks.
IEEE Transactions on Networking (ToN), 2016.

28 28

Properties
OpenFlow-based Management enables expressive subscription management

But requires from every publisher/ subscriber
 Understand the encoding

Relied on specific Header Fields!

 But would work in general using a big field or mask

More Complex, state-full not considered!

DEBS 2023 Talk In-Network Computing by Boris Koldehofe

bit 0

bit n

29 29

Extending to P4 based INP
P4 supports Programming Reconfigurable

Match Action Pipeline
Define own Protocol Headers to be used by

DEBS
Define Matching Operations for specific

Header fields

Source p4.org

Ralf Kundel, Christoph Gärtner, Manisha Luthra, Sukanya Bhowmik, Boris Koldehofe. Flexible Content-based Publish/Subscribe
over Programmable Data Planes. In Proceedings of the IEEE/IFIP Network Operations and Management Symposium (NOMS 2020)

https://p4.org/

30 30

P4: Enhancing Stateful Operations
Limited Support for Stateful Operations

Many pitfalls:
No sharing of registers between different

stages of the pipeline
 Exclusive read or write operations
 Packet cannot iterate over all registers

However, can be used to model for specific
platforms stateful CEP operators!

Kohler, Mayer, Dürr, Maaß, Bhowmik, and Rothermel. P4CEP: Towards In-
Network Complex Event Processing. In Proceedings of the 2018 Morning
Workshop on In-Network Computing (NetCompute ‘18, pp. 33–38.
https://doi.org/10.1145/3229591.3229593

DEBS 2023 Talk In-Network Computing by Boris Koldehofe

31 31

Supporting parallel operator execution with P4
Operator Parallelization is a common method in DEBS

Splitter:
 Partition streams in independent processable windows
 Operator instances return results to the merger
 Merger coordinates streams

Processing rate of the splitter is the bottleneck in scaling operators

Can be done already on the path between producers and consumers

Ruben Mayer, Boris Koldehofe, Kurt Rothermel. Predictable Low-Latency Event Detection with Parallel Complex Event Processing. Internet of
Things Journal, vol. 2(14), pp. 274–286. 2015. IEEE.

32 32

P4 Splitter: Window Operators
Idea: perform stream partitioning via INP

Problems:
Dynamically expressing multiple distinct

window semantics for operators
 Time-based, Count based, …
 Needs to be performed in line-rate with
 Match Action Logic
 Registers state

Bochra Boughzala, Christoph Gärtner, and Boris Koldehofe. Window-based Parallel Operator Execution with In-Network Computing. Proceedings of the 16th
ACM International Conference on Distributed and Event-based Systems (DEBS '22), pp. 91–96, ACM press.

33 33

Basic Idea / Procedure
1. Each stream identified by an id  Matching events
2. Window specifications can be dynamically added/removed
 with respect to a unique stream id (Dynamically Matching rules)

3. Window state is captured via registers
4. Incoming events trigger updates to window state (dependent on window)
5. Will be added to a multicast group that sends an event packet to all destinations

Bochra Boughzala, Christoph Gärtner, and Boris Koldehofe. Window-based Parallel Operator Execution with In-Network Computing. Proceedings of the 16th ACM
International Conference on Distributed and Event-based Systems (DEBS '22), pp. 91–96, ACM press.

34 34

Example
Specifying a window semantics:
 e.g. Count-based Sliding Window
 stream ID 𝑖𝑖𝑑𝑑𝑥𝑥
 parallelism degree 𝑁𝑁
 window size 𝑛𝑛
 window shift 𝛿𝛿, 𝛿𝛿 ≤ 𝑛𝑛 (counting)

Bochra Boughzala, Christoph Gärtner, and Boris Koldehofe. Window-based Parallel Operator Execution with In-Network Computing. Proceedings of the 16th ACM
International Conference on Distributed and Event-based Systems (DEBS '22), pp. 91–96, ACM press.

Round-robin load-balancing over 5 operator instances with 𝑛𝑛 = 4, 𝛿𝛿 = 1.

35 35

Challenge: How to evaluate such a system?
Although P4 facilitates programming INP hardware, it is time consuming

One device costs ~5000-10000€

Huge Development effort

Don’t expect large scale comparison or a baseline comparison with Apache Flink

In general baseline comparisons
 Being faster neither straight forward nor very insightful

Bochra Boughzala, Christoph Gärtner, and Boris Koldehofe. Window-based Parallel Operator Execution with In-Network Computing. Proceedings of the 16th ACM
International Conference on Distributed and Event-based Systems (DEBS '22), pp. 91–96, ACM press.

36 36

What did we evaluate:
P4STA for Packet generation and validation

What is the latency introduced by a INP

Measure feasible throughput

Measure resources
 How many streams, operators, and windows can be supported

Bochra Boughzala, Christoph Gärtner, and Boris Koldehofe. Window-based Parallel Operator Execution with In-Network Computing. Proceedings of the 16th
ACM International Conference on Distributed and Event-based Systems (DEBS '22), pp. 91–96, ACM press.

37 37

Some Findings
Throughput and Low Latency
High Throughput low and stable latency

Throughput depends on window semantics
 Load generator is a bottleneck
 Higher parallelization degree and overlap

increases bandwidth

Latency
 Independent of count-base vs time-based

Bochra Boughzala, Christoph Gärtner, and Boris Koldehofe. Window-based Parallel Operator Execution with In-Network Computing.
Proceedings of the 16th ACM International Conference on Distributed and Event-based Systems (DEBS '22), pp. 91–96, ACM press.

38 38

Some findings
Resource Usage
Resource Usage Determines Scalability
Comprises
 Stages, Tables, and Register Arrays
 Tofino1 has max 12 stages

 Could deploy with line rate-performance
 Count-Based windows : 457𝑘𝑘 operators, 286𝑘𝑘 concurrent streams
 Time-based windows: 362𝑘𝑘 operators and up to 65𝑘𝑘 streams

Bochra Boughzala, Christoph Gärtner, and Boris Koldehofe. Window-based Parallel Operator Execution with In-Network Computing.
Proceedings of the 16th ACM International Conference on Distributed and Event-based Systems (DEBS '22), pp. 91–96, ACM press.

39 39

Interesting Approaches in INP for Data Driven Applications
Networking Community is working on many abstractions for Stateful INP
Challenge: understand practicality and applicability in Middleware services

But also very interesting work in distributed computing!
 E.g. “ P4xos: Consensus as a Network Service”, IEEE/ACM Transactions on Networking, 2020.

Bochra Boughzala, Christoph Gärtner, and Boris Koldehofe. Window-based Parallel Operator Execution with In-Network Computing. Proceedings of the 16th ACM
International Conference on Distributed and Event-based Systems (DEBS '22), pp. 91–96, ACM press.

RMT
[SIGCOMM’ 2013]

Match-Action Tables

Domino
[SIGCOMM 2016]

Stateful Atoms

PiFo
[SIGCOMM 2016]

Queue Management

FloBlaze
[NSDI-2019]

FSAs

FloBlaze
[NSDI-2019]

FSAs

Taurus
[ASPOLOS 2022]

Map Reduce

Thoanos
[SIGCOMM 2022]

Map Reduce

Adapted from Vishal Shrivastav presentation at SIGCOMM

40 40

Everything on Performance?
Not really!

Data movements are the cause for high energy efficiency!

Moving to sustainable computing components!

Recent example
 TCAmMCogniGron: Energy Efficient

Memristor-Based TCAM for
Match-Action Processing

Saad Saleh, Anouk S. Goossens, Tamalika Banerjee, and Boris Koldehofe. TCAmMCogniGron: Energy Efficient Memristor-Based TCAM for Match-
Action Processing. In Proceedings of the 7th International Conference on Rebooting Computing (ICRC 2022). IEEE, 2022.

Data Plane

Hardware

Milestone
2014

programmable
ASIC-Pipe

. . .

 Programmable
ASIC for packet
processing
 Very high bandwidth
 Limited flexibility

ASIC = „fixed silicon chip for special purpose, e.g. packet switching”

Hybrid Designs, e.g.
Memeristive

Devices

 Energy Efficient
Switching?
 Computational

Intelligence
inside the
network?

CogniGron –
Groningen

…

20xy

41 41

Conclusion
Distributed Real-Time Analytics is a fundamental and challenging paradigm in the

Internet of Things

Accelerators based on In-Network Computing
 Reduce performance bottlenecks
 Utilize the Distributed Infrastructure more efficient

Distributed systems mechanisms
 Flexible usage of heterogeneous resources
 No single mechanism fits them all

Future Research:
 Better understanding of

Distributed Computing + In-Network computing
 Energy-efficiency of In-Network Computing

DEBS 2023 Talk In-Network Computing by Boris Koldehofe

42 42

Questions

DEBS 2023 Talk In-Network Computing by Boris Koldehofe

Prof. Dr. Boris Koldehofe

Technische Universität Ilmenau
Department of Computer Science and Automation
Distributed Systems and Operating Systems Group

Ralf Kundel and Fridolin Siegmund and Rhaban Hark and Amr Rizk and Boris
Koldehofe. Network Testing Utilizing Programmable Networking Hardware.
IEEE Communications Magazine, 7 pages, IEEE 2022.

Bowmik, Tariq, Koldehofe, Kohler, Dürr, Rothermel. High Performance
Publish/Subscribe Middleware in Software-defined Networks. IEEE Transactions
on Networking (ToN), 2016.

Bochra Boughzala, Christoph Gärtner, and Boris Koldehofe. Window-based
Parallel Operator Execution with In-Network Computing. Proceedings of the
16th ACM International Conference on Distributed and Event-based Systems
(DEBS '22), pp. 91–96, ACM press.

	Accelerating the performance of distributed stream processing systems with in-network computing
	Short Introduction�Boris Koldehofe
	Data Driven Applications
	Outline
	Low Latency responses
	Improving Timestamp Accuracy�Technological developments
	DEBS / Real-Time Analytics
	Distributed Real-Time Analytics
	Scalable and Network Centric Adaptation
	Meeting Performance of Time Sensitive Distributed Applications
	Lack for Flexibility: Communication Protocols and Operating Systems
	Ingredients for Increased Flexibility
	In-Network Computing
	Evolution: In-Network Computing resources
	Performance Acceleration via INP
	Performance Acceleration via INP
	Is INP = Low Latency?�High Performance Packet Analytics in P4STA
	Challenges in using them for Real-time analytics
	Outline
	Publish/Subscribe and Performance
	High Performance Publish/Subscribe: �Basic Idea
	High Performance Publish/Subscribe: �Basic Idea
	SDN-based Publish/Subscribe Middleware
	Configuration Based on OpenFlow
	 Subscription and event matching in flow table
	Approach overview
	Result: Forwarding performance
	Properties
	Extending to P4 based INP
	P4: Enhancing Stateful Operations
	Supporting parallel operator execution with P4
	P4 Splitter: Window Operators
	Basic Idea / Procedure
	Example
	Challenge: How to evaluate such a system?
	What did we evaluate:
	Some Findings�Throughput and Low Latency
	Some findings �Resource Usage
	Interesting Approaches in INP for Data Driven Applications
	Everything on Performance?
	Conclusion
	Questions

